Fast multi-view segment graph kernel for object classification

نویسندگان

  • Luming Zhang
  • Mingli Song
  • Xiao Liu
  • Jiajun Bu
  • Chun Chen
چکیده

Object classification is an important issue in multimedia information retrieval. Usually, we can use images from multiple views (or multi-view images) to describe an object for classification. However, two issues remain unsolved. First, exploiting the spatial relations of local features from different view images for object classification. Second, accelerating the multi-view object classification process. To solve these two problems, we propose fast multi-view segment graph kernel (FMSGK). Given a set of multi-view images for an object, we segment each of them in terms of its color intensity distribution. And interand intra-view segment graphs are constructed to describe the spatial relations of the segments between and within view images respectively. Then, these two types of graphs are integrated into a so-called multi-view segment graph. And the kernel between objects is computed by accumulating all matchings’ of walk structures between their corresponding multi-view segment graphs. Since computing the kernel directly is highly time-consuming, an accelerating algorithm is derived. Finally, a multi-class support vector machine (SVM) (Duda et al., 2000 [19]; Wang et al., 2008 [32]; Dai and Mai, 2012 [6]) is trained based on the computed kernels for object classification. The experimental results on three data sets validate the effectiveness of our approach. & 2012 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Graph-View Learning for Complicated Object Classification

In this paper, we propose to represent and classify complicated objects. In order to represent the objects, we propose a multi-graph-view model which uses graphs constructed from multiple graph-views to represent an object. In addition, a bag based multi-graph model is further used to relax labeling by only requiring one label for a bag of graphs, which represent one object. In order to learn c...

متن کامل

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

Classification of Fruits Using Computer Vision and a Multiclass Support Vector Machine

Automatic classification of fruits via computer vision is still a complicated task due to the various properties of numerous types of fruits. We propose a novel classification method based on a multi-class kernel support vector machine (kSVM) with the desirable goal of accurate and fast classification of fruits. First, fruit images were acquired by a digital camera, and then the background of e...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

Protection Scheme of Power Transformer Based on Time–Frequency Analysis and KSIR-SSVM

The aim of this paper is to extend a hybrid protection plan for Power Transformer (PT) based on MRA-KSIR-SSVM. This paper offers a new scheme for protection of power transformers to distinguish internal faults from inrush currents. Some significant characteristics of differential currents in the real PT operating circumstances are extracted. In this paper, Multi Resolution Analysis (MRA) is use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2013